报告人:吴清艳(临沂大学)
时 间:2023年6月15日上午8:30
地 点:腾讯会议560-348-509(无密码)
内容摘要:
Products of Siegel upper half spaces are Siegel domains, whose Silov boundaries have the structure of products $\mathscr H_1\times\mathscr H_2$ of Heisenberg groups. By the reproducing formula of bi-parameter heat kernel associated to sub-Laplacians, we show that a function in holomorphic Hardy space $H^1$ on such a domain has boundary value belonging to bi-parameter Hardy space $H^1(\mathscr H_1\times \mathscr H_2)$. With the help of atomic decomposition of $H^1(\mathscr H_1\times \mathscr H_2)$ and bi-parameter harmonic analysis, we show that the Cauchy-Szeg\H o projection is a bounded operator from $H^1 (\mathscr H_1\times \mathscr H_2)$ to holomorphic Hardy space $H^1$, and any holomorphic $H^1$ function can be decomposed as a sum of holomorphic atoms. Bi-parameter atoms on $\mathscr H_1\times\mathscr H_2$ are more complicated than $1$-parameter ones, and so are holomorphic atoms.
个人简介:
吴清艳,临沂大学数学与统计学院教授,博士生导师。主要从事多复变函数论和调和分析的研究,特别是这两个方向的相互交叉与应用。在J. Funct. Anal., Indiana Univ. Math. J., Proc. Amer. Math. Soc.等数学杂志上发表学术论文30余篇,先后主持国家自然科学基金3项、山东省自然科学基金3项。
联系人:杨东勇